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CHAPTER 1

INTRODUCTION

This report provides the results of the analysis of the IFToMM linear bicycle benchmark
problem using the EoM software produced by the University of Windsor Vehicle Dynamics
and Control research group. The problem consists of four rigid bodies connected by three
revolute joints, and two rolling contacts. The properties are summarized below. The
problem is modified slightly by defining a steering torque between the fork and frame as
the system input and the steer and lean angles as the system output. Note that there may
be some round-off in the data describing the system properties in this document, but that
the full precision values were used to define the system. Please see the problem definition
document for the more precise values.

1.1 System Description

The properties of the bodies are given in Tables 1.1and 1.2. The properties of the connecctions
are given in Table 1.3.

Table 1.1: Body CG Locations and Mass

No. Body Name Location [m] Mass [kg]
frame 0.300, 0.000, -0.900  85.000
fork 0.900, 0.000, -0.700 4.000

front-wheel  1.020, 0.000, —0.350 3.000
rear-wheel 0.000, 0.000, -0.300 2.000
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1. INTRODUCTION 1.1. System Description

Table 1.2: Body Inertia Properties

No. BodyName  Inertia [kg-m®] (L, Ly, Ls; Ly, Ly, Ly)

1 frame 9.200, 11.000, 2.800; 0.000, 0.000, —2.400
2 fork 0.059, 0.060, 0.007; 0.000, 0.000, 0.008
3 front-wheel  0.141, 0.280, 0.141; 0.000, 0.000, 0.000
4 rear-wheel 0.060, 0.120, 0.060; 0.000, 0.000, 0.000

Note: inertias are defined as the positive integral over the
body, e.g., Iy = + [y dm.

Table 1.3: Connection Location and Direction

No. Connection Name Location [m] Unit Axis

1 head 0.853, 0.000, -0.761  0.309, 0.000, 0.951

2 rear axle 0.000, 0.000, -0.300  0.000, 1.000, 0.000

3 front axle 1.020, 0.000, -0.350  0.000, 1.000, 0.000

4 rear road 0.000, 0.000, 0.000 0.000, 1.000, 0.000

5 front road 1.020, 0.000, 0.000 0.000, 1.000, 0.000

6 Speed 0.300, 0.000, -0.900  1.000, 0.000, 0.000

7 front tire 1.020, 0.000, 0.000  0.000, 1.000, 0.000

8 rear tire 0.000, 0.000, 0.000 0.000, 1.000, 0.000
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CHAPTER 2

ANALYSIS

The EoM software automatically conducts a linear analysis after producing the linearized
equations of motion. The results are shown in Figure 2.1, and show strong agreement with
the IFToMM benchmark results.

One area of discrepancy is the presence of additional zero eigenvalues. In the benchmark
definition, the longitudinal, lateral, and yaw motions are treated as ignorable coordinates,
and do not appear in the equations of motion. In the formulation used by the EoM
software, neutrally stable motions are included in the result, and so a number of additional
zero eigenvalues appear. In a comparison of the EoM results to the benchmark, the zero
eigenvalues show by far the largest error, on the order of 1 x 1076, while the the non-zero
eigenvalues have error on the order of 1 x 10713, If desired, with relatively little additional
computational effort, the state space formulation can be reduced to a minimal realization
that eliminates the ignorable modes from the equations of motion, leaving only the non-zero
eigenvalues.

The numerical values of the eigenvalues generated by the EoM software are included
in a separate text file.
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Figure 2.1: Eigenvalues vs. Speed
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APPENDIX A

EQUATIONS OF MOTION

The equations of motion are prepared in first order form.

I o of(p) [V -1 o(p) [0
0 M -G|{wr+|K L -Fl{wp=1{0|{u}
0 0 of(a) [0 o I]lu) |[I

The state vector consists of six global position coordinates for each body p, and six body
fixed velocity coordinates w for each body. The input vector u is appended to the state.
The first row of the system are the linearized kinematic differential equations. The matrix
V is determined only by the velocity around which the linearization occurs. The second
row of the system are the linearized Newton Euler equations. The matrix M represents the
mass and inertia terms, the matrix G allows the inclusion of systems that have dependency
on the rate of input. The K is the stiffness matrix, and includes terms that depend on the
physical stiffnes, the geometry, and the static preload carried in the connections. The matrix
L is the damping matrix, and depends on the physical damping coefficients, the geometry,
and the velocity of linearization, in order to include the centripetal and gyroscopic terms.
The F matrix represents the senitvity to the various inputs. The bottom row appends the
inputs to the state vector.

The system is subject to constraints.

Jo 0 0l[p p] [0 0
—JhVJhOWW=00
0 Jon Ol u| |0 0

The first row of the system are the holonomic contraints, applied to position and rate of
change of position. The J;, matrix is the constraint Jacobian. The second row of the system
are also the holonomic contraints, applied to velocity and rate of change of velocity. There
is redundancy between the first entry in the first row and the second entry in the second
row. The third row of the system are the nonholonomic contraints, applied to velocity and
rate of change of velocity.

A null space of the constraint matrix is found, and used to reduce the system to a
smaller set of coordinates, in the vector x, and giving the matrices E, A, and B. The result
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is combined with a set of output equations, also transformed to minimal coordinates, to
give C and D. Note that the resulting system may still define a set of DAEs, depending on
the condition of the resulting E matrix. If E is singular, then the system of equations can
be further reduced to a minimal realization.

The full state space equations:

FERHE
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